Rational Design of Janus Metal Atomic‐Site Catalysts for Efficient Polysulfide Conversion and Alkali Metal Deposition: Advances and Prospects

Author:

Dai Guangfu1,Li Shouzhe1,Shi Menglin1,Sun Lingxin1,Jiang Ying2,Hui Kwun Nam3,Ye Zhengqing13ORCID

Affiliation:

1. Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology School of Material Science and Engineering Hebei University of Technology Tianjin 300401 P. R. China

2. School of Material Science and Engineering Tianjin University of Technology Tianjin 300384 P. R. China

3. Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Avenida da Universidade Taipa Macau SAR 999078 P. R. China

Abstract

AbstractAlthough metal–sulfur batteries (M–S batteries, M = Li, Na, K) are promising next‐generation energy‐storage devices because of ultrahigh theoretical energy density, low cost, and environmentally friendliness, their practical applications are significantly hindered by the shuttle effect of polysulfides and growth of alkali metal dendrites. These issues can be mitigated by using Janus metal atomic‐site catalysts, which possess the maximum atom utilization efficiency (≈100%), adjustable electronic structures, and tailorable catalytic sites, thereby effectively improving the electrochemical performance of M–S batteries. In this review, the recent progress and development of Janus metal atomic‐sites on the properties, synthesis, and characterizations are reviewed. Then, the recent advances in Janus metal atomic‐site catalysts intended for accelerating polysulfide conversion and regulating alkali metal deposition, briefly introducing the working principles of the Janus metal atomic‐site catalysts in M–S batteries, are systematically summarized. Furthermore, a high emphasis is placed on effective regulation strategies for the rational design of Janus metal atomic‐site catalysts in M–S batteries. Finally, the current challenges and future research directions are also presented to develop high‐efficiency Janus metal atomic‐site catalysts for high‐energy M–S batteries.

Funder

Hebei University of Technology

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3