CoP Quantum Dots Embedded in Carbon Polyhedra through Co─P─C Bonding Enabling High‐Energy Lithium‐Ion Capacitors

Author:

Li Shani12,Xu Yanan1,Zhang Xudong1,Guo Yang1,Ma Yibo1,Sun Xianzhong1,Zhang Xiong12,Ning Puqi12,Wang Kai12ORCID,Ma Yanwei123

Affiliation:

1. Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China

2. School of Engineering Sciences University of Chinese Academy of Sciences Beijing 100049 China

3. School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 P. R. China

Abstract

AbstractPhosphides with high theoretical capacity are considered ideal anode materials for lithium‐ion capacitors (LICs), but poor electronic conductivity as well as unsatisfied cyclic stability limits the performance of the phosphides. Here a covalently bonded CoP@C heterostructure is reported, which consists of 5 nm CoP quantum dots (QDs) like pomegranate seeds pinned in carbon polyhedron through interfacial Co─P─C bonding. The ultrafine size of CoP QDs provides more reactive sites and a shorten electrons/ions diffusion path, boosting the specific capacity. The Co─P─C bond induces the energy band variation of CoP and increases the interfacial charge density, bringing about fast kinetics. Besides, the Co─P─C bond introduces a robust pining effect among CoP QDs and carbon polyhedra, greatly improving the structure stability of 5 nm CoP QDs. The CoP@C heterostructure electrode exhibits high capacity (nearly 1000 mAh g−1) and superior cycling stability. It is worth noting that a prototyped LIC full‐cell of YP80//CoP@C presents an impressive high energy density of 172 Wh kg−1 and a power density of 10.8 kW kg−1. Moreover, the LIC possesses an ultra‐long life, retaining 80% after 20,000 cycles. This study offers an effective design for phosphides achieving fast kinetics and superior structure stability through an interfacial bonding approach.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Natural Science Foundation of Beijing Municipality

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3