Retina‐Inspired Artificial Synapses with Ultraviolet to Near‐Infrared Broadband Responses for Energy‐Efficient Neuromorphic Visual Systems

Author:

Zhang Junyao1,Guo Pu1,Guo Ziyi1,Li Li1,Sun Tongrui1,Liu Dapeng1,Tian Li2,Zu Guoqing1,Xiong Lize2,Zhang Jianhua3,Huang Jia12ORCID

Affiliation:

1. School of Materials Science and Engineering Tongji University Shanghai 201804 P. R. China

2. Translational Research Institute of Brain and Brain‐Like Intelligence Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation Shanghai Fourth People's Hospital Affiliated to Tongji University Tongji University Shanghai 200434 P. R. China

3. Key Laboratory of Advanced Display and System Application Ministry of Education Shanghai University Shanghai 200072 P. R. China

Abstract

AbstractNeuromorphic visual system with image perception, memory, and preprocessing functions is expected to simulate basic features of the human retina. Organic optoelectronic synaptic transistors emulating biological synapses may be promising candidates for constructing neural morphological visual system. However, the sensing wavelength range of organic optoelectronic synaptic transistors usually limits their potential in artificial multispectral visual perception. Here, retina‐inspired optoelectronic synaptic transistors that present broadband responses covering ultraviolet, visible, and near‐infrared regions are demonstrated, which leverage the wide‐range photoresponsive charge trapping layer and the heterostructure formed between PbS quantum dots and organic semiconductor. Simplified neuromorphic visual arrays are developed to simulate comprehensive image perception, memory, and preprocessing functions. Benefitting from the flexibility of the charge trapping and organic semiconductor layers, a flexible neuromorphic visual array can be fabricated, having an ultralow power consumption of 0.55 fJ per event under a low operating voltage of −0.01 V. More significantly, an accelerating image preprocessing effect can be observed in a wide wavelength range even beyond the perception range of the human visual system, due to the gate‐adjustable synaptic plasticity. These devices are highly promising for implementing neuromorphic visual systems with broadband perception, increasing image processing efficiency, and promoting the development of artificial vision.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3