Temperature Tunable 4D Polymeric Photonic Crystals

Author:

De Bellis Isabella1,Martella Daniele12,Parmeggiani Camilla13,Wiersma Diederik Sybolt124,Nocentini Sara12ORCID

Affiliation:

1. European Laboratory for Nonlinear Spectroscopy LENS Via N. Carrara 1 Sesto Fiorentino 50019 Firenze Italy

2. National Institute of Metrological Research INRiM Strada delle Cacce 91 10135 Torino Italy

3. Chemistry Department Ugo Schiff University of Florence Via della Lastruccia 3 Sesto Fiorentino 50019 Firenze Italy

4. Physics Department University of Florence Via G. Sansone 1 Sesto Fiorentino 50019 Firenze Italy

Abstract

AbstractPhotonic crystals owe their multitude of optical properties to the way their structure creates interference effects. It is therefore possible to influence the photonic response by acting on their physical structure. In this article, tunable photonic crystals made by elastic polymers that respond to their environment are explored, in particular with a physical deformation under temperature variation. This creates a feedback process in which the photonic response depends on its physical structure, which itself is influenced by the environmental changes. By using a multi‐photon polymerization process specifically optimized for soft responsive polymers such as Liquid Crystalline Networks, highly resolved, reproducible, and mechanically self‐standing photonic crystals are fabricated. The physical structure of the 3D woodpile can be tuned by an external temperature variation creating a reversible spectral tuning of 50 nm in the telecom wavelength range. By comparing these results with finite element calculations and temperature induced shape‐change, it is confirmed that the observed tuning is due to an elastic deformation of the structure. The achieved nanometric patterning of tunable anisotropic photonic materials will further foster the development of reconfigurable photonic crystals with point defects acting as tunable resonant cavities and, more in general, of 4D nanostructures.

Funder

Fondazione Cassa di Risparmio di Firenze

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3