Quantitative Imaging of MicroRNA‐21 In Vivo for Real‐Time Monitoring of the Cancer Initiation and Progression

Author:

Zheng Liting1,Wu Ying2,Wang Qian2,Du Wei1,Chen Lanlan1,Song Jibin2ORCID,Yang Huanghao1

Affiliation:

1. New Cornerstone Science Laboratory Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China MOE key laboratory for analytical science of food safety and biology College of Chemistry Fuzhou University Fuzhou 350108 China

2. State key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 10010 China

Abstract

AbstractMicroRNA‐21 (MiR‐21) has been confirmed to be upregulated in tumors, and its abnormal expression is closely associated with tumor occurrence. However, the traditional imaging methods are limited to qualitative imaging of miR‐21, and no effective strategy has been developed for monitoring its concentration in vivo during cancer initiation and progression. Herein, a biosensor is created utilizing a NIR‐II ratiometric fluorescent nanoprobe to quantitatively monitor dynamic alterations in miR‐21 levels in vivo. The nanoprobe (termed DCNP@DNA2@IR806) is constructed by introducing IR806 as a donor and down‐conversion nanoparticles (DCNP) as the acceptor, using DNA as linkers. Upon miR‐21‐responsive initiation of the nanoprobe, the 1550 nm fluorescent signal of DCNP stimulated by a 808 nm laser (F1550, 808Ex) increased because of the close proximity of IR806 to the DCNP and the subsequent non‐radiative energy transfer (NRET). Meanwhile, the 1550 nm fluorescent signal of DCNP stimulated by a 980 nm laser (F1550, 980Ex) remained stable because of the absence of NRET. This ratiometric NIR‐II fluorescent signal has been confirmed to be a reliable indicator of miR‐21 concentration in vivo. The strategy holds promise for further enhancing the understanding of microRNAs‐based molecular mechanisms underlying cancer progression, laying a foundation for the early diagnosis of microRNAs‐related diseases.

Funder

Natural Science Foundation of Fujian Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3