In Vivo Implantable Strain Sensor for Real‐Time and Precise Pathophysiological Monitoring of Contractile Living Organs

Author:

Ryu Bokyeong12ORCID,Kim C‐Yoon1ORCID,Park Se-Pill2ORCID,Lee Keel Yong3ORCID,Lee Sunghun4ORCID

Affiliation:

1. Department of Veterinary Physiology and College of Veterinary Medicine Konkuk University Seoul 05029 Republic of Korea

2. Department of Biomedical Informatics Medicine Jeju National University Jeju 63243 Republic of Korea

3. Department of Bioscience and Biotechnology Sejong University Seoul 05006 Republic of Korea

4. Department of Physics and Astronomy Sejong University Seoul 05006 Republic of Korea

Abstract

AbstractEarly diagnosis based on precise monitoring of the vital organs in real‐time can provide the opportunity for subsequent curative treatments and medical decisions. Here, it is reported that the instantaneous monitoring of physiological responses in contractile living organs such as the heart, lung, and urinary bladder using a vertical graphene strain sensor (VGS), which possesses remarkable sensitivity and stability. The electrical resistance of VGS (i.e., sensitivity) corresponding to the minute contractile motion of living organs is monitored, which displacement in organs is less than a few mm in scale. For pathological diagnosis, it is compared normal and damage rodent models, including models of myocardial infarction, pulmonary fibrosis, and spinal cord injury, highlighting the capability of the VGS sensor to discern symptoms and guide medical decisions based on the lesions. The results suggest that the VGS could be useful in implantable biocompatible applications and may be a promising component of in vivo diagnostic platforms.

Funder

National Research Foundation of Korea

Ministry of Food and Drug Safety

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3