Ruthenium And Silver Synergetic Regulation NiFe LDH Boosting Long‐Duration Industrial Seawater Electrolysis

Author:

Chen Hengyi1,Gao Rui‐Ting1,Chen Haojie1,Yang Yang2,Wu Limin13,Wang Lei1ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering College of Energy Material and Chemistry Inner Mongolia University Hohhot 010021 China

2. NanoScience Technology Center Department of Materials Science and Engineering Department of Chemistry Renewable Energy and Chemical Transformation Cluster The Stephen W. Hawking Center for Microgravity Research and Education University of Central Florida Orlando Florida 32826 USA

3. Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China

Abstract

AbstractThe chloride ions in seawater result in corrosion, low catalytic efficiency, and poor stability of the electrocatalysts in direct seawater electrolysis, which limits the use of large‐scale seawater electrolysis technology. Herein, a corrosion‐resistant Ag/NiFeRu layered double hydroxide (LDH) electrocatalyst for seawater electrolysis at industrial current density, in which Ru and Ag species in the catalyst can have a corrosion‐resistance of chloride ions from the anode surface and enhance its robustness in seawater is designed. The catalyst requires the overpotentials of 256 and 287 mV to obtain a current density of 1 A cm−2 in 1 m KOH and 1 m KOH + seawater, respectively. More importantly, it works stably for over 1000 h at 1 A cm−2 in alkaline seawater. Further quasi‐industrial conditions measurement (6 m KOH + seawater, 60 °C) shows a markedly low overpotential of 174 mV at 1 A cm−2 on Ag/NiFeRu LDH, obtaining over 140 h under harsh industrial conditions. Theoretical calculations demonstrate that the Ru species can effectively regulate the local electronic structure of NiFe LDH, and enhance the intrinsic activity of NiFe LDH. The transformation of Ag2O from Ag during OER stabilizes the Fe site in NiFe LDH, which improves the overall stability of the electrocatalyst.

Funder

National Science and Technology Major Project

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3