Deep‐Learning‐Assisted Thermogalvanic Hydrogel E‐Skin for Self‐Powered Signature Recognition and Biometric Authentication

Author:

Li Ning1,Wang Zhaosu1,Yang Xinru1,Zhang Zhiyi23,Zhang Wengdong1,Sang Shengbo1,Zhang Hulin1ORCID

Affiliation:

1. College of Electronic Information and Optical Engineering Taiyuan University of Technology Taiyuan 030024 China

2. College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 China

3. Shanxi‐Zheda Institute of Advanced Materials and Chemical Engineering Taiyuan 030001 China

Abstract

AbstractSelf‐powered electronic skins (e‐skins), as on‐skin human‐machine interfaces, play a significant role in cyber security and personal electronics. However, current self‐powered e‐skins are primarily constrained by complex fabricating process, intrinsic stiffness, signal distortion under deformation, and inadequate comprehensive performance, thereby hindering their practical applications. Herein, a novel highly stretchable (534.5%), ionic conductive (4.54 S m−1), thermogalvanic (1.82 mV K−1) hydrogel (TGH) is facilely fabricated by a one‐pot method. Owing to the formation of Li+(H2O)n hydration structure, the TGH presents excellent anti‐freezing and non‐drying performance. It remains flexible and conductive (3.86 S m−1) at −20 °C and shows no obvious degradation in the thermoelectrical performance over 10 days. Besides, acting as a self‐powered e‐skin, the TGH combined with deep learning technology for signature recognition and biometric authentication is successfully demonstrated, achieving an accuracy of 92.97%. This work exhibits the TGH‐based e‐skin's tremendous potential in the new generation of human‐computer interaction and information security.

Funder

Natural Science Foundation of Shanxi Province

Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3