Temporal Separation between Lattice Dynamics and Electronic Spin‐State Switching in Spin‐Crossover Thin Films Evidenced by Time‐Resolved X‐Ray Diffraction

Author:

Ridier Karl1,Bertoni Roman2,Mandal Ritwika2,Volte Alix3,Jiang Yifeng4,Trzop Elzbieta2,Levantino Matteo3,Watier Yves3,Frey Johannes3,Zhang Yuteng1,Pezeril Thomas2,Cailleau Hervé2,Molnár Gábor1,Bousseksou Azzedine1ORCID,Lorenc Maciej2,Mariette Céline3

Affiliation:

1. Laboratoire de Chimie de Coordination CNRS UPR 8241 Université de Toulouse 205 route de Narbonne Toulouse F‐31077 France

2. Univ. Rennes CNRS IPR (Institut de Physique de Rennes) – UMR 6251 Rennes F‐35000 France

3. European Synchrotron Radiation Facility 71 avenue des Martyrs Grenoble F‐38000 France

4. European XFEL Holzkoppel 4 22869 Schenefeld Germany

Abstract

AbstractSpin‐crossover (SCO) complexes have drawn significant attention for the possibility to photoswitch their electronic spin state on a sub‐picosecond timescale at the molecular level. However, the multi‐step mechanism of laser‐pulse‐induced switching in solid state is not yet fully understood. Here, time‐resolved synchrotron X‐ray diffraction is used to follow the dynamics of the crystal lattice in response to a picosecond laser excitation in nanometric thin films of the SCO complex [Fe(HB(1,2,4‐triazol‐1‐yl)3)2]. The observed structural dynamics unambiguously reveal a lattice expansion on the 100 picosecond timescale, which is temporally decoupled both from the ultrafast molecular photoswitching process (occurring within 100 fs) and from the delayed, thermo‐elastic (Arrhenius‐driven) conversion (taking place ≈10 ns). These time‐separated dynamics are also manifested by the observation of damped acoustic oscillations in the time evolution of the lattice volume, whereas no such oscillations are observed in the electronic spin‐state dynamics. Overall, these results suggest the existence of a universal behavior whereby the intramolecular energy barrier between low‐spin and high‐spin states acts as an intrinsic dynamical bottleneck in the out‐of‐equilibrium spin‐state switching dynamics of SCO materials.

Funder

European Synchrotron Radiation Facility

Agence Nationale de la Recherche

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3