Decreasing the O2‐to‐H2O2 Kinetic Energy Barrier on Dilute Binary Alloy Surfaces with Controlled Configurations of Isolated Active Atoms

Author:

Lin Shang‐Cheng1,Chang Chun‐Wei1,Tsai Meng‐Hsuan2,Chen Chih‐Hao3,Lin Jui‐Tai1,Wu Chia‐Ying1,Kao I‐Ting1,Jao Wen‐Yang1,Wang Chia‐Hsin2,Yu Wen‐Yueh3,Hu Chi‐Chang1,Lin Kun‐Han1ORCID,Yang Tung‐Han14ORCID

Affiliation:

1. Department of Chemical Engineering National Tsing Hua University Hsinchu 30013 Taiwan

2. National Synchrotron Radiation Research Center Hsinchu 300092 Taiwan

3. Department of Chemical Engineering National Taiwan University Taipei 106335 Taiwan

4. High Entropy Materials Center National Tsing Hua University Hsinchu 30013 Taiwan

Abstract

AbstractShifting from the typical 4e pathway to H2O in electrochemical oxygen reduction to the 2e pathway to H2O2 is increasingly recognized as an environmentally friendly approach for producing H2O2. However, the competitive 4e pathway is a significant obstacle to the production of H2O2 since H2O is the thermodynamically favored product. Here, a series of Pt, Pd, and Rh active atoms diluted within inert‐Au matrices with precisely controlled atomic arrangements and coordination environments are synthesized via facet engineering for O2‐to‐H2O2 production. Surprisingly, individually dispersed Pt atoms within the Au surface enclosed by the square atomic arrangements exhibit superior H2O2 selectivity and achieve a maximum selectivity of 90% at 0.36 V versus the reversible hydrogen electrode. Operando synchrotron ambient pressure X‐ray photoelectron spectroscopy identifies the presence of *OOH key intermediates on these isolated Pt active sites. Grand canonical density‐functional theory also reveals that the kinetic energy barrier for the 2e pathway (0.08 eV; OOH* + H+ + e →  H2O2) on the isolated Pt sites is significantly lower than the 4e pathway (0.29 eV; OOH* + H+ + e → O* +  H2O). This work enables atomic‐scale control in dilute binary alloy surfaces with specific configurations of isolated active atoms and provides essential guidance for catalyst design to boost O2‐to‐H2O2 production.

Funder

National Science and Technology Council

Ministry of Education

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3