Record‐Breaking Efficient and Mechanically‐Robust Ambient‐Air‐Processed Carbon‐Based Flexible Perovskite Photovoltaics Through Effective and Benign‐to‐Plastics Green‐Antisolvent Quenching

Author:

Chalkias Dimitris A.1ORCID,Nikolakopoulou Archontoula1,Kontaxis Lykourgos C.2,Kalarakis Alexandros N.3,Stathatos Elias1ORCID

Affiliation:

1. Nanotechnology & Advanced Materials Laboratory Department of Electrical and Computer Engineering University of the Peloponnese Patras GR26334 Greece

2. Department of Mechanical Engineering & Aeronautics University of Patras Rio‐Patras GR26500 Greece

3. Department of Mechanical Engineering University of the Peloponnese Patras GR26334 Greece

Abstract

AbstractLightweight and bendy plastic‐based perovskite solar cells (PSCs) are considered strong emerging rivals to the rigid heavy‐block photovoltaics made of conventional crystalline‐silicon. To further increase the competitiveness of these devices, the research community is nowadays searching for compatible, effective and scalable strategies to achieve efficiencies of >20%, while their development using lower‐cost and greener materials is also increasingly investigated. From the precursor solutions and prenucleation state of perovskites to the fully crystallized materials, this disclosure provides key findings that benefit fundamental understanding for streamlining antisolvent quenching methods toward the development of high‐performance and stable flexible‐plastic PSCs under ambient atmospheric conditions. Evidencing the importance of the concurrent consideration of a series of antisolvent physical properties for a group of primary and secondary monohydric alcohols, a breakthrough achievement is attained. Mirror‐like, pinhole‐free, monolayered vertically‐aligned (high‐aspect‐ratio) grained and mechanically‐robust ambient‐air‐processed perovskite structures are developed using 2‐butanol as a non‐toxic and benign‐to‐plastics (evidenced by nano‐mechanics) antisolvent alternative to the reference chlorobenzene. To this end, a new literature record of 20.09% for scalable carbon‐based flexible PSCs is achieved (power‐to‐weight performance 1.05 Wg−1, at 190 gm−2), also demonstrating highly‐robust unencapsulated devices under the ISOS‐D‐1 protocol conditions (T85 >1000 h) and bending fatigue (T80(5‐mm‐radius) >5000 bending cycles).

Funder

European Commission

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3