Nanographene‐Based Metal‐Organic Framework Thin Films: Optimized Packing and Efficient Electron‐Hole Separation Yielding Efficient Photodetector

Author:

Xu Zhiyun1,Liu Yidong1,Chandresh Abhinav1,Pati Palas Baran2,Monnier Vincent2,Heinke Lars1ORCID,Odobel Fabrice2,Diring Stéphane2,Haldar Ritesh3ORCID,Wöll Christof1ORCID

Affiliation:

1. Institute of Functional Interfaces (IFG) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany

2. Universite Lunam Universite de Nantes CNRS Chimie et Interdisciplinarite Synthese Analyse Modelization (CEISAM) UMR 6230, 2 rue de la Houssiniere Nantes cedex 3 44322 France

3. Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad Telangana 500046 India

Abstract

AbstractOrganic semiconductors, specifically polycyclic aromatic chromophores like pentacene, coronene, and nanographenes (hexa‐peri‐hexabenzocoronene, HBC), are often utilized in optoelectronic applications due to their intriguing single‐molecule properties. However, the integration of these aromatic compounds into optoelectronic devices frequently encounters significant obstacles, primarily due to the unpredictable and challenging control over the structure and morphology of their condensed phase. Rather than resorting to chemical modifications or advanced thin‐film manufacturing methods such as chemical vapor deposition, the so‐called metal‐organic framework (MOF) approach is employed to create a highly photoresponsive, nanographene‐based thin film employing a layer‐by‐layer, liquid‐phase epitaxy method. It is demonstrated that the novel Cu‐HBC MOF thin film exhibits excellent photoresponsive behavior under ultraviolet illumination, including a fast response time (˂ 0.02 s) and high current switching ratio (≈104), which significantly outperforms an isostructural MOF Zn‐HBC. Furthermore, it is demonstrated that the metal nodes inside the MOF can be used to enhance the photoresponse by efficient exciton splitting.

Funder

China Scholarship Council

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3