Introducing Dynamic Bonds in Light‐based 3D Printing

Author:

Zhu Guangda1,Houck Hannes A.2,Spiegel Christoph A.13ORCID,Selhuber‐Unkel Christine1,Hou Yi4,Blasco Eva13ORCID

Affiliation:

1. Institute for Molecular Systems Engineering and Advanced Materials Heidelberg University 69120 Heidelberg Germany

2. Institute of Advanced Study and Department of Chemistry University of Warwick Coventry CV4 7AL United Kingdom

3. Institute of Organic Chemistry Heidelberg University 69120 Heidelberg Germany

4. Department of Biomedical Engineering City University of Hong Kong Hong Kong 999077 China

Abstract

AbstractLight‐based 3D printing has received significant attention due to several advantages including high printing speed and resolution. Along with the development of new technologies, material design is key for the next generation of light‐based 3D printing. Conventional printable polymeric materials, also known as photopolymers or photoresins, often lead to thermosets–polymer networks cross‐linked by permanent covalent bonds which bring limited adaptability and restricted reprocessability. Dynamic bonds that can reversibly break and reform enable network rearrangement, thereby offering unprecedented properties to the materials such as adaptability, self‐healing, and recycling capabilities. Hence, introducing dynamic bonds into materials for light‐based 3D printing is a promising strategy to further expand and meet the diverse application scenarios of 3D printed multi‐functional materials and moreover meet more demanding sustainable and nature‐inspired design considerations (e.g., adaptability and self‐healing). Herein, an overview of recent advances in dynamic photopolymers for light‐based 3D printing, aiming to bridge these two promising research fields is presented. Importantly, the current challenges are also analyzed and perspectives for further developing dynamic photopolymers for light‐based 3D printing and their potential applications are provided.

Funder

Deutsche Forschungsgemeinschaft

Carl-Zeiss-Stiftung

European Research Council

Alexander von Humboldt-Stiftung

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3