Dual‐Atom‐Site Sn‐Cu/C3N4 Photocatalyst Selectively Produces Formaldehyde from CO2 Reduction

Author:

Kim Bupmo1ORCID,Kwon Dayoung2,Baeg Jin‐Ook3ORCID,Austeria P Muthu4,Gu Geun Ho4ORCID,Lee Jeong‐Hyeon5,Jeong Jeehun6,Kim Wooyul2ORCID,Choi Wonyong2ORCID

Affiliation:

1. Department of Chemical Engineering Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea

2. KENTECH Institute for Environmental and Climate Technology Korea Institute of Energy Technology (KENTECH) Naju 58330 Republic of Korea

3. Korea Research Institute of Chemical Technology 141 Gajeong‐ro, Yuseong Daejeon 34114 Republic of Korea

4. Department of Energy Engineering Korea Institute of Energy Technology (KENTECH) Naju 58330 Republic of Korea

5. Center for Shared Research Equipment Korea Institute of Energy Technology (KENTECH) Naju 58330 Republic of Korea

6. Department of Energy Engineering KENTECH Institute for Energy Materials and Devices Korea Institute of Energy Technology (KENTECH) Naju 58330 Republic of Korea

Abstract

AbstractThe solar‐driven catalytic reduction of CO2 to value‐added chemicals is under intensive investigation. The reaction pathway via *OCHO intermediate (involving CO2 adsorbed through O‐binding) usually leads to the two‐electron transfer product of HCOOH. Herein, a single‐atom catalyst with dual‐atom‐sites featuring neighboring Sn(II) and Cu(I) centers embedded in C3N4 framework is developed and characterized, which markedly promotes the production of HCHO via four‐electron transfer through the *OCHO pathway. The optimized catalyst achieves a high HCHO productivity of 259.1 µmol g−1 and a selectivity of 61% after 24 h irradiation, which is ascribed to the synergic role of the neighboring Sn(II)–Cu(I) dual‐atom sites that stabilize the target intermediates for HCHO production. Moreover, adsorbed *HCHO intermediate is detected by in situ Fourier transform infrared spectroscopy (CO stretches at 1637 cm−1). This study provides a unique example that controls the selectivity of the multi‐electron transfer mechanisms of CO2 photoconversion using heteronuclear dual‐atom‐site catalyst to generate an uncommon product (HCHO) of CO2 reduction.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3