High‐Density Plasmonic Nanopores for DNA Sensing at Ultra‐Low Concentrations by Plasmon‐Enhanced Raman Spectroscopy

Author:

Iarossi Marzia1ORCID,Darvill Daniel12,Hubarevich Aliaksandr1,Huang Jian‐An13,Zhao Yingqi13,De Fazio Angela Federica1,O'Neill Devin B.1,Tantussi Francesco1,De Angelis Francesco1ORCID

Affiliation:

1. Istituto Italiano di Tecnologia Via Morego 30 Genova 16163 Italy

2. Department of Materials Imperial College Prince Consort Rd, South Kensington London SW7 UK

3. Faculty of Medicine Faculty of Biochemistry and Molecular Medicine University of Oulu 2125B, Aapistie 5◦ Oulu 90220 Finland

Abstract

AbstractSolid‐state nanopores are implemented in new and promising platforms that are capable of sensing fundamental biomolecular constituents at the single‐molecule level. However, several limitations and drawbacks remain. For example, the current strategies based on both electrical and optical sensing suffer from low analyte capture rates and challenging nanofabrication procedures. In addition, their limited discrimination power hinders their application in the detection of complex molecular constructs. In contrast, Raman spectroscopy has recently demonstrated the ability to discriminate both nucleotides and amino acids. Herein, a plasmonic nanoassembly is proposed supporting nanopores at high density, in the order of 100 pores per µm2. These findings demonstrate that the device has a high capture rate in the range of a few fm. The pore size is ≈10 nm in diameter and provides an amplification of the electromagnetic field exceeding 103 in intensity at 785 nm. Owing to these features, single‐molecule detection is achieved by means of surface‐enhanced Raman scattering from a solution containing 50 fm DNA molecules (≈4.4 kilobase pairs). Notably, the reported spectra show an average number of 2.5 Raman counts per nucleotide. From this perspective, this number is not far from what is necessary to discriminate the DNA sequence.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3