The Role of Chemical Composition in Determining the Charge‐Carrier Dynamics in (AgI)x(BiI3)y Rudorffites

Author:

Lal Snigdha1ORCID,Righetto Marcello1,Putland Benjamin W. J.1,Sansom Harry C.1,Motti Silvia G.12,Jin Heon1,Johnston Michael B.1,Snaith Henry J.1,Herz Laura M.13ORCID

Affiliation:

1. Department of Physics Clarendon Laboratory University of Oxford Parks Road Oxford OX1 3PU UK

2. School of Physics and Astronomy Faculty of Engineering and Physical Sciences University of Southampton University Road Southampton SO17 1BJ UK

3. Institute for Advanced Study Technical University of Munich Lichtenbergstrasse 2a 85748 Garching Germany

Abstract

AbstractSilver‐bismuth‐based perovskite‐inspired materials (PIMs) are increasingly being explored as non‐toxic materials in photovoltaic applications. However, many of these materials exhibit an ultrafast localization of photogenerated charge carriers that is detrimental for charge‐carrier extraction. In this work, such localization processes are explored for thermally evaporated thin films of compositions lying along the (AgI)x(BiI3)y series, namely BiI3, AgBi2I7, AgBiI4, Ag2BiI5, Ag3BiI6, and AgI, to investigate the impact of changing Ag+/Bi3+ content. A persistent presence of ultrafast charge‐carrier localization in all mixed compositions and BiI3, together with unusually broad photoluminescence spectra, reveal that eliminating silver will not suppress the emergence of a localized state. A weak change in electronic bandgap and charge‐carrier mobility reveals the resilience of the electronic band structure upon modifications in the Ag+/Bi3+ composition of the mixed‐metal rudorffites. Instead, chemical composition impacts the charge‐carrier dynamics indirectly via structural alterations: Ag‐deficient compositions demonstrate stronger charge‐carrier localization most likely because a higher density of vacant sites in the cationic sublattice imparts enhanced lattice softness. Unraveling such delicate interplay between chemical composition, crystal structure, and charge‐carrier dynamics in (AgI)x(BiI3)y rudorffites provides crucial insights for developing a material‐by‐design approach in the quest for highly efficient Bi‐based PIMs.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3