Affiliation:
1. School of Materials Science and Engineering Central South University Changsha 410083 China
2. School of Metallurgy and Environment Central South University Changsha 410083 China
Abstract
AbstractMaintaining a consistently high current density growth rate in the hydrogen evolution reaction is highly challenging because the limited mass transfer rate at the electrode/electrolyte interface will make the adsorption reaction as the rate‐determining step associated with a low hydrogen coverage, exhibiting a Tafel slope >120 mV dec–1. Therefore, maximizing the current density range in which the desorption reaction is the rate‐determining step, can significantly reduce the overpotential. Herein, a surface sulfur decoration strategy is presented to modify the molybdenum carbide electrocatalyst and achieve coordinated adsorption/desorption kinetics, leading to a dominant Volmer–Heyrovsky mechanism across a wide range of current densities. Both experimental and theoretical results validate the surface charge redistribution induced by sulfur decoration, which subtly optimizes the Gibbs free energy of hydrogen adsorption and enhances the in‐plane polarization field. As a result, the as‐obtained surface sulfur‐decorated molybdenum carbide electrocatalyst exhibits coordinated adsorption/desorption kinetics and efficient hydrogen delivery, ultimately surpassing the commercial Pt/C electrocatalyst for high‐efficiency hydrogen evolution.
Funder
National Natural Science Foundation of China