Fabrication of Architectured Biomaterials by Multilayer Co‐Extrusion and Additive Manufacturing

Author:

Vellayappan Muthu Vignesh1,Duarte Francisco1,Sollogoub Cyrille2,Dirrenberger Justin2,Guinault Alain2,Frith Jessica E.1,Parkington Helena C.3,Molotnikov Andrey14,Cameron Neil R.15ORCID

Affiliation:

1. Department of Materials Science and Engineering Monash University 14 Alliance Lane Clayton VIC 3800 Australia

2. PIMM Arts et Metiers Institute of Technology CNRS Cnam HESAM University 151 boulevard de l'Hopital 75013 Paris France

3. Department of Physiology Biomedicine Discovery Institute Monash University 26, Innovation Walk Victoria 3800 Australia

4. RMIT Centre for Additive Manufacturing School of Engineering RMIT University Melbourne VIC 3000 Australia

5. School of Engineering University of Warwick Coventry CV4 7AL UK

Abstract

AbstractTissue engineering benefits from advances in 3D printing and multi‐material assembly to attain certain functional benefits over existing man‐made materials. Multilayered tissue engineering constructs might unlock a unique combination of properties, but their fabrication remains challenging. Herein, a facile process is reported to manufacture biomaterials with an engineered multilayer architecture, via a combination of co‐extrusion and 3D printing. Polymer filaments containing 5, 17, or 129 alternating layers of poly(lactic acid)/thermoplastic polyurethane (PLA/TPU) are produced, and explored for their use in fused deposition modeling (FDM) to fabricate scaffolds for cardiomyocyte culture. The co‐extruded filaments exhibit a layered architecture in their cross‐section with a continuous interface, and the integrity and alignment of the layers are preserved after 3D printing. The 17 alternating layers PLA/TPU composites exhibit excellent mechanical properties. It is envisaged that the multilayered architecture of the fabricated scaffolds can be beneficial for aligning cardiomyocytes in culture. It is found that the 17 alternating layers PLA/TPU significantly improve cardiomyocyte morphology and functionality compared to single phase materials. It is believed that this biomaterials fabrication scheme, combining a top‐down and bottom‐up approach, offers tremendous flexibility in producing a broad class of novel‐architectured materials with tunable structural design for tissue engineering applications and beyond.

Funder

Monash University

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3