Affiliation:
1. Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
2. Beijing Key Laboratory of Opto‐Electronic Functional Materials & Micro‐Nano Devices Department of Physics Renmin University of China Beijing 100872 China
3. National Engineering Research Center of Electric Vehicles Beijing Institute of Technology Beijing 100081 China
4. State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
Abstract
AbstractManganese‐based phosphate cathodes are promising candidates for developing advanced sodium‐ion batteries, primarily driven by their reliable elemental abundance, low toxicity, and desirable cycling performance. However, the cooperative Jahn–Teller effect of Mn3+ will inevitably lead to structural disorder and irreversible phase transition, thus greatly harming the reversible capacity, rate, and cycling performance. Herein, a stable NASICON‐type Na3MnHf(PO4)3 cathode is demonstrated with a volume variation of 1.9% upon the process of Na+ extraction/insertion based on the robust Hf─O bond and symmetrical MnO6 octahedron. Moreover, making full use of the stepwise redox reactions of Mn2+/Mn3+/Mn4+, this cathode reveals excellent cycling stability with a capacity retention of 85.4% after 2500 cycles at 10 C. Matching with commercial hard carbon anodes, the assembled full cell keeps a capacity retention of 92.1% with the Coulombic efficiency close to 100% after 600 cycles at 1 C. The research promises opportunities for the structural amelioration of manganese‐based phosphate cathodes toward the application in high‐performance sodium‐ion batteries.
Funder
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献