Adaptive Magnetoactive Soft Composites for Modular and Reconfigurable Actuators

Author:

Zhang Zenghao1,Heron John T.1,Pena‐Francesch Abdon12ORCID

Affiliation:

1. Department of Material Science and Engineering University of Michigan Ann Arbor MI 48109 USA

2. Macromolecular Science and Engineering Robotics Institute University of Michigan Ann Arbor MI 48109 USA

Abstract

AbstractMagnetoactive soft materials, typically composed of magnetic particles dispersed in a soft polymer matrix, are finding many applications in soft robotics due to their reversible and remote shape transformations under magnetic fields. To achieve complex shape transformations, anisotropic, and heterogeneous magnetization profiles must be programmed in the material. However, once programmed and assembled, magnetic soft actuators cannot be easily reconfigured, repurposed, or repaired, which limits their application, their durability, and versatility in their design. Here, magnetoactive soft composites are developed from squid‐derived biopolymers and NdFeB microparticles with tunable ferromagnetic and thermomechanical properties. By leveraging reversible crosslinking nanostructures in the biopolymer matrix, a healing‐assisted assembly process is developed that allows for on‐demand reconfiguration and magnetic reprogramming of magnetoactive composites. This concept in multi‐material modular actuators is demonstrated with programmable deformation modes, self‐healing properties to recover their function after mechanical damage, and shape‐memory behavior to lock in their preferred configuration and un‐actuated catch states. These dynamic magnetic soft composites can enable the modular design and assembly of new types of magnetic actuators, not only eliminating device vulnerabilities through healing and repair but also by providing adaptive mechanisms to reconfigure their function on demand.

Funder

American Chemical Society Petroleum Research Fund

Division of Materials Research

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3