Hybrid Shear‐Thinning Hydrogel Integrating Hyaluronic Acid with ROS‐Responsive Nanoparticles

Author:

Bezold Mariah G.1ORCID,Hanna Andrew R.1,Dollinger Bryan R.1ORCID,Patil Prarthana1ORCID,Yu Fang1ORCID,Duvall Craig L.1ORCID,Gupta Mukesh K.1ORCID

Affiliation:

1. Department of Biomedical Engineering Vanderbilt University Nashville TN 37235 USA

Abstract

AbstractNanoparticle (NP) supra‐assembly offers unique opportunities to tune macroscopic hydrogels’ mechanical strength, material degradation, and drug delivery properties. Here, synthetic, reactive oxygen species (ROS)‐responsive NPs are physically cross‐linked with hyaluronic acid (HA) through guest‐host chemistry to create shear‐thinning NP/HA hydrogels. A library of triblock copolymers composed of poly(propylene sulfide)‐b‐poly(N,N‐dimethylacrylamide)‐b‐poly(N,N‐dimethylacrylamide‐co‐N‐(1‐adamantyl)acrylamide) are synthesized with varied triblock architectures and adamantane grafting densities and then self‐assembled into NPs displaying adamantane on their surface. Self‐assembled NPs are mixed with β‐cyclodextrin grafted HA to yield eighteen NP/HA hydrogel formulations. The NP/HA hydrogel platform demonstrates superior mechanical strength to HA‐only hydrogels, susceptibility to oxidative/enzymatic degradation, and inherent cell‐protective, antioxidant function. The performance of NP/HA hydrogels is shown to be affected by triblock architecture, guest/host grafting densities, and HA composition. In particular, the length of the hydrophilic second block and adamantane grafting density of self‐assembled NPs significantly impacts hydrogel mechanical properties and shear‐thinning behavior, while ROS‐reactivity of poly(propylene sulfide) protects cells from cytotoxic ROS and reduces oxidative degradation of HA compared to HA‐only hydrogels. This study provides insight into polymer structure‐function considerations for designing hybrid NP/HA hydrogels and identifies antioxidant, shear‐thinning hydrogels as promising injectable delivery platforms for small molecule drugs and therapeutic cells.

Funder

National Institutes of Health

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3