Construction of Fe Nanoclusters/Nanoparticles to Engineer FeN4 Sites on Multichannel Porous Carbon Fibers for Boosting Oxygen Reduction Reaction

Author:

Wang Zhe1,Lu Zhe1,Ye Qitong2,Yang Zhenbei1,Xu Ruojie1,Kong Kexin1,Zhang Yifan1,Yan Tao1,Liu Yipu2,Pan Zhijuan1,Huang Yizhong3,Lu Xuehong3ORCID

Affiliation:

1. College of Textile and Clothing Engineering National Engineering Laboratory for Modern Silk Soochow University Suzhou 215123 P. R. China

2. School of Materials Science and Engineering Key Laboratory of Pico Electron Microscopy of Hainan Province Hainan University Haikou 570228 P. R. China

3. School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore

Abstract

AbstractFe–N–C catalysts are emerging as promising alternatives to Pt‐based catalysts for the oxygen reduction reaction (ORR), while they still suffer from sluggish reaction kinetics due to the discontented binding affinity between the Fe‐N4 sites and oxygen‐containing intermediates, and unsatisfactory stability. Herein, a flexible multichannel carbon fiber membrane immobilized with atomically dispersed Fe‐N4 sites and neighboring Fe nanoclusters/nanoparticles (FeN4‐FeNCP@MCF) is synthesized. The optimized geometric and electronic structures of the Fe atomic sites brought by adjacent Fe nanoclusters/nanoparticles and hierarchically porous structure of the carbon matrix endow FeN4‐FeNCP@MCF with outstanding ORR activity and stability, considerably outperforming its counterpart with FeN4 sites only and the commercial Pt/C catalyst. Liquid and solid‐state flexible zinc–air batteries employing FeN4‐FeNCP@MCF both exhibit outstanding durability. Theoretical calculation reveals that the Fe nanoclusters can trigger remarkable electron redistribution of the FeN4 sites and modulate the hybridization of central Fe 3d and O 2p orbitals, facilitating the activation of O2 molecules and optimizing the adsorption capacity of oxygen‐containing intermediates on FeN4 sites, and thus accelerating the ORR kinetic. This work offers an effective approach to constructing coupling catalysts that have single atoms coexisting with nanoclusters/nanoparticles for efficient ORR catalysis.

Funder

Soochow University

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3