Affiliation:
1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 China
2. Zhongke Institute of Strategic Emerging Materials Yixing 214216 China
3. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Science Beijing 100049 China
4. School of Materials Science and Engineering Jiangsu University Zhenjiang 212013 China
5. Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
Abstract
AbstractStretchable conductors based on nanopercolation networks have garnered great attention for versatile applications. Carbon nanotubes (CNTs) are well‐suited for creating high‐efficiency nanopercolation networks. However, the weak interfacial shear strength (IFSS) between CNTs and elastomer hardly dissipates the deformation energy and thus deteriorates the conductive network. Herein, a novel sulfur‐containing CNTs attached with abundant graphene nanoflaps using a two‐step sulfidation strategy are developed. The sulfur functionality creates a strong interfacial interaction with the elastomer polymer, while the graphene nanoflaps provide an enhanced, intertwined shear interface with elastomer that is capable of efficiently dissipating the deformation energy. As a result, the optimized nanocomposite significantly improves the IFSS between nanofiller and elastomer, displaying remarkable conductive robustness (ΔR/R0≈1.8 under 200%), superior stretchability (> 450%), and excellent mechanical durability (≈30 000 cycles). Moreover, the nanocomposite demonstrates excellent Joule heating efficiency (≈150 °C in 12 V), stretchable heating conversion (≈200%), and long‐term stability (> 24 h). To illustrate its capabilities, the nanocomposite is used to track human physiological signals and perform electric‐thermal actuating as a set of soft tongs. It is believed that this innovative approach will provide value for the development of wearable/stretchable devices, as well as human‐machine interaction, and bio‐robotics in the future.
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献