Fungal Engineered Living Materials: The Viability of Pure Mycelium Materials with Self‐Healing Functionalities

Author:

Elsacker Elise1ORCID,Zhang Meng2ORCID,Dade‐Robertson Martyn1ORCID

Affiliation:

1. Hub for Biotechnology in the Built Environment School of Architecture Planning and Landscape Newcastle University Newcastle NE1 7RU UK

2. Hub for Biotechnology in the Built Environment Department of Applied Sciences Faculty of Health and Life Sciences Northumbria University Newcastle NE1 8ST UK

Abstract

AbstractEngineered living materials (ELMs) composed entirely of fungal cells offer significant potential due to their functional properties such as self‐assembly, sensing, and self‐healing. Alongside rapid developments in the ELM field, there is significant and growing interest in mycelium materials, which are made from the vegetative part of filamentous fungi, as a potential source of advanced functional materials. In order to advance the development of fungal ELMs that utilize the organism's ability to regenerate as self‐repair, new methods for controlling and optimizing mycelium materials are needed, as well as a better understanding of the biological mechanisms behind regeneration. In this study, pure mycelium materials are fabricated for use as leather substitutes, and it is found that chlamydospores, thick‐walled vegetative cells formed at the hyphal tip, may be the key to the material's self‐healing properties. The results suggest that mycelium materials can survive in dry and oligotrophic environments, and self‐healing is possible with minimal intervention after a two‐day recovery period. Finally, the study characterizes the mechanical recovery and physical properties of damaged and healed samples, allowing for the first characterization of fungal ELMs.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3