A NIR‐II‐Emissive Organic Nanomedicine with Biomimetic Engineering for High‐Contrast Targeted Bioimaging and Multiple Phototherapies of Pancreatic Tumors

Author:

Wang Yiwei1,Zhang Jie2,Wang Yu2,Yu Jie2,Gao Yijian2,Yang Yuliang2,Li Xiliang2,Wang Hongcheng1,Li Shengliang2ORCID

Affiliation:

1. Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 P. R. China

2. College of Pharmaceutical Sciences Soochow University Suzhou 215123 P. R. China

Abstract

AbstractRecent advances are achieved in the design and development of efficient organic photosensitizers (PSs), especially with fluorescence imaging navigation in the second near‐infrared (NIR‐II, 1000–1700 nm) region. However, there are simply a handful of NIR‐II emissive organic PSs with efficient oxygen‐independent capability due to the scarcity of high‐performance NIR‐responsive organic materials and targeted delivery. Herein, a NIR‐II‐emissive organic nanomedicine with biomimetic engineering for high‐performance NIR‐II imaging and targeted multiple phototherapies of pancreatic tumors is reported. An A‐D‐A‐type conjugated small‐molecule TPC is designed and used to prepare water‐dispersive nanoparticles, which demonstrated high efficiency for type I and type II photodynamic performances, good photothermal conversion of 57%, and bright NIR‐II emission with a quantum yield of 9.8% under 808 nm light irradiation. With pancreatic cancer cell membrane camouflage, the biomimetic TPC nanomedicine achieved high‐resolution and targeted bioimaging of whole‐body blood vessels and tumors. Antitumor experiments demonstrated the high efficiency of the biomimetic TPC nanomedicine for pancreatic tumor elimination and good biosafety with 808 nm light irradiation. This work demonstrated a NIR‐II‐emissive versatile nanomedicine with enhanced tumor‐targeting for high‐resolution NIR‐II bioimaging and superior phototheranostics, providing a feasible idea for the evolution of targeted and high‐performance theranostics.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3