Surface Energy Mediated Sulfur Vacancy of ZnIn2S4 Atomic Layers for Photocatalytic H2O2 Production

Author:

Zhang Kailian123,Dan Meng2,Yang Jingfei2,Wu Fengxiu2,Wang Leigang1,Tang Hua3,Liu Zhao‐Qing2ORCID

Affiliation:

1. School of Materials Science and Engineering Jiangsu University Zhenjiang Jiangsu 212013 P. R. China

2. School of Chemistry and Chemical Engineering/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China

3. School of Environmental Science and Engineering Qingdao University Qingdao Shandong 266071 P. R. China

Abstract

AbstractConstructing rich defect active site structure for material design is still a great challenge. Herein, a simple surface engineering strategy is demonstrated to construct one‐unit‐cell ZnIn2S4 atomic layers with the modulated surface energy of S vacancy. Rich surface energy can regulate and control the rich S vacancy, which ensures rich active sites, higher charge density and effective carrier transport. As a result, the ZnIn2S4 atomic layers with rich surface energy affords an obvious enhancement in H2O2 productive rate of 1592.04 µmol g−1 h−1, roughly 14.58 times superior to that with poor surface energy. Moreover, the in situ infrared diffuse reflection spectrum indicates that S vacancy as the oxygen reduction reaction active site is responsible for the critical intermediate *O2 and *OOH, corresponding to two‐electron oxygen reduction reaction. This study provides a valuable insight and guidance for constructing controllably defects to achieve highly efficient H2O2 production.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Guangzhou University

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3