Self‐Powered Integrated Tactile Sensing System Based on Ultrastretchable, Self‐Healing and 3D Printable Ionic Conductive Hydrogel

Author:

Mogli Giorgio1,Reina Marco1,Chiappone Annalisa2,Lamberti Andrea13,Pirri Candido Fabrizio13,Roppolo Ignazio13,Stassi Stefano1ORCID

Affiliation:

1. Department of Applied Science and Technology Politecnico di Torino C.so Duca degli Abruzzi 24 Turin 10129 Italy

2. Dipartimento di Scienze Chimiche e Geologiche Università degli studi di Cagliari Cittadella Universitaria Blocco D, S.S. 554 bivio per Sestu Monserrato CA 09042 Italy

3. Center for Sustainable Future Technologies @Polito Istituto Italiano di Tecnologia Via Livorno, 60 Turin 10144 Italy

Abstract

AbstractSelf‐healing ionic conductive hydrogels have shown significant potential in applications like wearable electronics, soft robotics, and prosthetics because of their high strain sensitivity and mechanical and electrical recovery after damage. Despite the enormous interest in these materials, conventional fabrication techniques hamper their use in advanced devices since only limited geometries can be obtained, preventing proper conformability to the complexity of human or robotic bodies. Here, a photocurable hydrogel with excellent sensitivity to mechanical deformations based on a semi‐interpenetrating polymeric network is reported, which holds remarkable mechanical properties (ultimate tensile strain of 550%) and spontaneous self‐healing capabilities, with complete recovery of its strain sensitivity after damages. Furthermore, the developed material can be processed by digital light processing 3D printing technology to fabricate complex‐shaped strain sensors, increasing mechanical stress sensitivity with respect to simple sensor geometries, reaching an exceptional pressure detection limit below 1 Pa. Additionally, the hydrogel is used as an electrolyte in the fabrication of a laser‐induced graphene‐based supercapacitor, then incorporated into a 3D‐printed sensor to create a self‐powered, fully integrated device. These findings demonstrate that by using 3D printing, it is possible to produce multifunctional, self‐powered sensors, appropriately shaped depending on the various applications, without the use of bulky batteries.

Funder

Ministero dell'Università e della Ricerca

European Research Council

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3