Stabilizing Cu+ Species in Cu2O/CuO Catalyst via Carbon Intermediate Confinement for Selective CO2RR

Author:

Shi Haojun1,Luo Lingli1,Li Congcong1,Li Yu1,Zhang Tingting1,Liu Zhongliang1,Cui Jialin1,Gu Li1,Zhang Ling1,Hu Yanjie1,Li Huihui1,Li Chunzhong1ORCID

Affiliation:

1. Key Laboratory for Ultrafine Materials of Ministry of Education School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China

Abstract

AbstractCopper oxide nanomaterials have been suggested to be efficient for highly selective multi‐carbon (C2+) production in CO2 reduction reaction (CO2RR), due to the introduction of surface Cu+ species from oxide catalysts. However, the Cu+ species on the catalyst surface are prone to being reduced to Cu0 under reductive conditions during CO2RR. Here, a network‐structured catalyst is developed consisting of ultrafine Cu2O/CuO nanoparticles that harbor an abundance of pores. This catalyst is synthesized via flame spray pyrolysis (FSP) method and engineered to confine carbon intermediates, which subsequently cover the local catalyst surface and stabilize Cu+ species. As a result, a C2+ products Faradaic efficiency (FE) of approximately 80.0% at a partial current density of 320.0 mA cm−2 is achieved, and a large C2+ to C1 ratio of ≈9.7. In situ XRD and XPS spectra are employed to reveal the indeed presence of Cu+ species on the catalyst surface during the CO2RR process, which extensively improves the adsorption of *CO intermediates and thus the C─C coupling reaction to form C2+ products.

Funder

National Natural Science Foundation of China

Shanghai Rising-Star Program

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3