Affiliation:
1. College of Materials Science and Engineering Nanjing Tech University No. 30 South Puzhu Road Nanjing Jiangsu 211816 China
2. School of Automobile and Intelligent Traffic Jiangsu Vocational College of Information Technology No. 1 Qianou Road Wuxi Jiangsu 214153 China
3. School of Resource Environment and Safety Engineering University of South China Hengyang 421001 China
Abstract
AbstractAs a benchmark triple‐conducting cathode, BaCo0.4Fe0.4Zr0.1Y0.1O3−δ (BCFZY) has been widely investigated for protonic ceramic fuel cells (PCFC) in recent years. However, the reported electrochemical performance of BCFZY cathode differs, which is determined in this work to originate from the thermal expansion mismatch between BCFZY and electrolyte. Accordingly, two strategies for enhanced thermo‐mechanical compatibility are examined: impregnation and thermal expansion offset. In contrast to the impregnation of BCFZY nanoparticles on electrolyte backbones that only helps improve electrochemical performance, negative thermal expansion oxide Sm0.85Cu0.15MnO3−δ (SCM)‐offset BCFZY exhibits superior durability and activity simultaneously. Specifically, the polarization resistance decay rate of the SCM‐offset BCFZY is only ~0.2%/100 h, compared with ~18.75%/100 h for “impregnated BCFZY.” Moreover, pure SCM generates moderate cathodic performance (area‐specific resistance = 0.11 Ω cm2, 700 °C), X‐ray diffraction and transmission electron microscopy reveal an in‐situ formed intergranular Ba2Cu3SmO7−δ phase at the boundaries of BCFZY and SCM. Thus, SCM can serve as a “three‐effect” additive, i) offset thermo‐expansion, ii) strengthen electrode structure and adhesion, and iii) provide acceptable oxygen‐reduction‐reaction activity, being favorable for superior performance. A PCFC using a SCM‐offset BCFZY cathode achieves the highest power density (1455 mW cm−2) yet recorded for PCFCs with BCFZY‐based cathodes.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献