Highly‐Entangled Hydrogel Electrolyte for Fast Charging/Discharging Properties in Aqueous Zinc Ion Batteries

Author:

Shen Zhaoxi1,Liu Yu2,Li Zhongheng2,Tang Ziqing3,Pu Jun4,Luo Lei2,Ji Yu2,Xie Junpeng5,Shu Zheng2,Yao Yagang4,Zhang Ning1,Hong Guo5ORCID

Affiliation:

1. College of Chemistry and Materials Science Key Laboratory of Analytical Science and Technology of Hebei Province Institute of Life Science and Green Development Hebei University Baoding 071002 P. R. China

2. Institute of Applied Physics and Materials Engineering University of Macau Avenida da Universidade Taipa Macau 999078 P. R. China

3. Wenzhou Institute University of Chinese Academy of Sciences Wenzhou 352001 P. R. China

4. National Laboratory of Solid State Microstructures College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 P. R. China

5. Department of Materials Science and Engineering & Centre of Super‐Diamond and Advanced Films (COSDAF) City University of Hong Kong Kowloon Hong Kong 999077 P. R. China

Abstract

AbstractAqueous zinc ion batteries coupling with conventional hydrogel electrolyte have the advantages of high safety, low cost, and simple manufacturing process while they are difficult for fast charging/discharging application scenarios due to the sluggish kinetics. Herein, a new strategy is developed for synthesizing a highly‐entangled polyacrylamide (HE‐PAM) hydrogel electrolyte to dramatically enhance the ion transportation and mechanical stability. The developed hydrogel electrolyte has lower ionic resistance and a strong elastic modulus. After being assembled into Zn/MnO2 batteries, the HE‐PAM hydrogel electrolyte exhibits excellent cycling stability and high‐rate capability under high current densities. Specifically, the Zn//HE‐PAM//MnO2 battery can resist the highest current of 35 A g−1, which outperforms previously reported works. Moreover, the HE‐PAM hydrogel electrolyte can also support the fast charging/discharging in proton ion batteries with a high capacity retention rate of 50% under 50 A g−1. This progress on hydrogel electrolytes can boost the development of quasi‐solid‐state batteries in the fast charging/discharging aspect.

Funder

City University of Hong Kong

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3