Tunable Interparticle Connectivity in Gold Nanosphere Assemblies for Efficient Photoacoustic Conversion

Author:

Kim Myeongsoo12ORCID,Kim Jinhwan23ORCID,VanderLaan Don23,Kubelick Kelsey P.23,Jhunjhunwala Anamik2,Choe Ayoung23,Emelianov Stanislav Y.123ORCID

Affiliation:

1. Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology Atlanta GA 30332 USA

2. Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University School of Medicine Atlanta GA 30332 USA

3. School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta GA 30332 USA

Abstract

AbstractManipulating matter at the nanometer scale to create desired plasmonic nanostructures holds great promise in the field of biomedical photoacoustic (PA) imaging. This study demonstrates a strategy for regulating PA signal generation from anisotropic nanosized assemblies of gold nanospheres (Au NSs) by adjusting the interparticle connectivity between neighboring Au NSs. The interparticle connectivity is controlled by modulating the diameter and interparticle spacing of Au NSs in the nanoassemblies. The results indicate that nanoassemblies with semi‐connectivity, i.e., assemblies with a finite interparticle spacing shorter than the theoretical limit of repulsion between nearby Au NSs, exhibit 3.4‐fold and 2.4‐fold higher PA signals compared to nanoassemblies with no connectivity and full connectivity, respectively. Furthermore, due to the reduced diffusion of Au atoms, the semi‐connectivity Au nanoassemblies demonstrates a high photodamage threshold and, therefore, excellent photostability at fluences above the current American National Standards Institute limits. The exceptional photostability of the semi‐connectivity nanoassemblies highlights their potential to surpass conventional plasmonic contrast agents for continuing PA imaging. Collectively, the findings indicate that semi‐connected nanostructures are a promising option for reliable, high‐contrast PA imaging applications over multiple imaging sessions due to their strong PA signals and enhanced photostability.

Funder

Breast Cancer Research Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3