Gradient Nanotwins and Enhanced Weighted Mobility Synergistically Upgrade Bi0.5Sb1.5Te3 Thermoelectric and Mechanical Performance

Author:

Pang Kaikai1,Miao Liya12,Zhang Qiang12,Pan Qiaoyan12,Liu Yan3,Shi Huilie3,Li Jingsong3,Zhou Wenjie1,Zhang Zongwei1,Zhang Yuyou1,Wu Gang12,Tan Xiaojian12ORCID,Noudem Jacques G.4,Wu Jiehua12,Sun Peng12,Hu Haoyang1,Liu Guo‐Qiang12,Jiang Jun12

Affiliation:

1. Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China

2. University of Chinese Academy of Sciences Beijing 100049 China

3. Research Institute of Nuclear Power Operation Wuhan 430223 China

4. Normandie University ENSICAEN UNICAEN CNRS CRISMAT Caen 14000 France

Abstract

AbstractBi2Te3‐based alloys have historically dominated the commercial realm of near room‐temperature thermoelectric (TE) materials. However, the more widespread application is currently constrained by its mediocre TE performance and inferior mechanical properties resulting from intrinsic hierarchical structure. Herein, microstructure modulation and carrier transport optimization strategies are employed to efficiently balance the electro‐thermal transport performance. Specifically, the weighted mobility increases by 24%, while the lattice thermal conductivity decreases by 31% at 350 K compared to the matrix. Consequently, the Bi0.5Sb1.496Cu0.004Te2.98 sample attains a peak ZT of 1.45 at 350 K and an average ZT of 1.20 (300–500 K). Moreover, intricated microstructure design, exemplified by the gradient twin structure, significantly enhances the mechanical performance metrics, including Vickers hardness, compressive strength, and bending strength, to notable levels of 0.94 GPa, 224 MPa, and 58 MPa, respectively. Consequently, the constructed 17‐pair TE modules demonstrate a maximum conversion efficiency of 6.5% at ΔT = 200 K, surpassing the majority of reported Bi2Te3‐based modules. This study provides novel insights into the synergistic enhancement of TE and mechanical properties in Bi2Te3‐based materials, with potential applicability to other TE systems.

Funder

National Natural Science Foundation of China

International Cooperation Project of Ningbo City

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3