Accessible Ni‐Fe‐Oxalate Framework for Electrochemical Urea Oxidation with Radically Enhanced Kinetics

Author:

Kim Jiseon1,Kim Min‐Cheol23,Han Sang Soo2,Cho Kangwoo14ORCID

Affiliation:

1. Division of Environmental Science & Engineering Pohang University of Science and Technology (POSTECH) 77 Cheongam‐Ro Pohang 37673 South Korea

2. Computational Science Research Center Korea Institute of Science and Technology (KIST) 5 Hwarangno 14‐gil, Seongbuk‐gu Seoul 02792 Republic of Korea

3. School of Chemical Engineering Sungkyunkwan University (SKKU) 2066 Seobu‐Ro Suwon 16419 Republic of Korea

4. Institute for Convergence Research and Education in Advanced Technology (I‐CREATE) Yonsei University International Campus Incheon 21983 Republic of Korea

Abstract

AbstractUrea oxidation reaction (UOR) has been utilized to substitute the oxygen evolution reaction (OER), to escalate the energy conversion efficiency in electrochemical hydrogen generation processes with denitrification of widespread urea in wastewater. This study reports breakthroughs in Ni‐based UOR electrocatalysts, particularly with NiFe oxalate (O‐NFF), derived from Ni3Fe alloy foam with prismatic nanostructures and elevated surface area. The O‐NFF achieves cutting‐edge performances, representing 500 mA cm−2 of current density at 1.47 V RHE and exceptionally low Tafel slope of 12.1 mV dec−1 (in 1 m KOH with 0.33 m urea). X‐ray photoelectron/absorption spectroscopy (XPS/XAS) coupled with density functional theory calculations unveil that oxalate ligands induce charge deficient Ni center, promoting stable urea‐O adsorption. Furthermore, Fe dopants enhance oxalate‐O charge density and H‐bond strength, facilitating C‐N cleavage for N2 and NO2 formation. The extraordinary UOR kinetics by the tandem effects of oxalate and Fe prevent Ni over‐oxidation, corroborated by operando XAS, minimizing OER interference. It agrees with an adaptive reconstruction to Fe‐doped β‐NiOOH on top surface in extended urea electrolysis with marginal loss in UOR kinetics. This findings shed light to bimetal‐organic‐framework as (pre)catalysts to improve industrial electrolytic H2 production.

Funder

National Research Foundation of Korea

Ministry of Education

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3