Regulation of both Bulk and Surface Structure by W/S Co‐Doping for Li‐Rich Layered Cathodes with Remarkable Voltage and Capacity Stability

Author:

Liu Zhenkun1,Che Xiangli2,Wang Wei3,Huang Gesong1,Huang Wenjie1,Liu Chenyu1,Liu Qi3,Zhu Ye2,Lin Zhan1,Luo Dong14ORCID

Affiliation:

1. School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China

2. Department of Applied Physics Research Institute for Smart Energy The Hong Kong Polytechnic University Hong Kong 999077 China

3. Department of Physics City University of Hong Kong Hong Kong 999077 China

4. School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan 411201 China

Abstract

AbstractLithium‐rich layered oxides (LLOs) have gained significant attention due to their high capacity of over 250 mAh g−1, which originates from the charge compensation of oxygen anions activated under high voltage. However, the charge compensation of oxygen anions is prone to over‐oxidation, leading to serious irreversible oxygen release, surface‐interface reactions, and structural evolution. These detriments make LLOs undergo fast voltage decay and capacity fading, which have hindered their practical applications for many years. Herein, this work develops a multifunctional co‐doping strategy and constructs W─O bonds with strong bonding interaction and covalence, low bond energy Li─S bonds with non‐binding electrons near the Fermi level, and continuous and homogeneous surface spinel‐like layer induced by W/S co‐doping. Their synergistic effect significantly mitigates the irreversible oxygen release and surface‐interface reactions and improves structural stability of Li‐rich layered cathodes. Thus, the designed and prepared Co‐free Li‐rich layered cathode (Li1.232Mn0.574Ni0.191W0.003O1.995S0.005) delivers superior voltage and capacity stability. Its capacity retention after 400 cycles is as large as 86%, and its voltage decay rate from the 10th to the 400th cycle is only 0.626 mV cycle−1.

Funder

Hong Kong Polytechnic University

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3