Affiliation:
1. Department of Electro‐Optics and Photonics University of Dayton Dayton OH 45469 USA
2. IonQ Inc. 4505 Campus Drive College Park MD 20740 USA
3. Department of Physics University of Connecticut Storrs CT 06269 USA
4. Air Force Research Laboratory Sensors Directorate Wright‐Patterson Air Force Base 45433 OH USA
5. Altamira Technologies Corporation 2850 Presidential Dr. Fairborn OH 45324 USA
6. Department of Physics University of Dayton Dayton OH 45469 USA
Abstract
AbstractProgrammable and reconfigurable photonics is revolutionized the next generation of Si/SiN‐based photonics processors, optical signal processing, and neural and quantum networks. Ultra‐low loss phase‐change technology has the enormous potential to offer energy‐efficient, extra large‐scale integrated (ELSI) nonvolatile programmable photonics that can overcome the limitations of commonly used volatile and energy‐hungry programmable photonic systems. So far, most of the phase change materials (PCM) devices have already shown to be suitable for programmable and reconfigurable photonic circuit applications that do not require extreme endurance or ultra‐fast switching speeds. However, applications with ultra‐fast speed and multi‐million cycling requirements, such as memory cells, quantum computing, optical displays, and optical modulators necessitate enormous improvements in the existing cycling speed and endurance of PCMs, for high‐performance device configuration. Here, optical switching of an ultra‐low loss PCM (Sb2Se3) is demonstrated with an unprecedented combination of rapid cycling speed (0.6 × 105 cycles s−1) and extreme endurance (> 2 × 106 cycles) that pave the way for ultrafast, large‐scale, programmable, and reconfigurable integrated photonic circuits and devices.
Funder
Air Force Office of Scientific Research
Small Business Innovation Research
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献