Beetle‐Inspired Gradient Slant Structures for Capacitive Pressure Sensor with a Broad Linear Response Range

Author:

Wu Lei1,Li Xuan2,Choi Jungrak2,Zhao Zhi‐Jun3,Qian Linmao1,Yu Bingjun1,Park Inkyu2ORCID

Affiliation:

1. Tribology Research Institute State Key Laboratory of Traction Power Southwest Jiaotong University Chengdu 610031 China

2. Department of Mechanical Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea

3. Institute of Smart City and Intelligent Transportation Southwest Jiaotong University Chengdu 611756 China

Abstract

AbstractFlexible pressure sensors with broad linearity range and excellent sensor‐to‐sensor uniformity have attracted unprecedented attention in the electronic skins, human–machine interfaces, and environmental monitoring. However, challenges including poor sensor‐to‐sensor uniformity owing to the randomness of the used nanomaterials or porous structures and saturated response that leads to a restricted linearity range because of structural stiffening have been yet addressed. Herein, a novel dielectric layer based on beetle‐inspired gradient slant structures (GSS) is proposed to endow capacitive pressure sensors with extensive linearity range and excellent sensor‐to‐sensor uniformity. The excellent compressibility of the GSS due to the bending deformation of the slant pillars significantly enhances sensor sensitivity. The broad linearity range comes from the compensation of contact area during sequential contact of the GSS dielectric layer from tall to low slant pillars with electrodes. The high sensor‐to‐sensor uniformity is ascribed to the excellent batch‐to‐batch consistency of prepared GSS via 3D printing‐based fabrication process. Moreover, the proposed GSS‐based pressure sensors present rapid response/recovery, low detection limit, excellent dynamic response, negligible hysteresis, and outstanding long‐term stability. Finally, the excellent applicabilities of proposed capacitive pressure sensors in diverse scenarios including external pressure stimuli detection, a flexible perception array, and a smart insole system are demonstrated.

Funder

National Research Foundation of Korea

Korea Evaluation Institute of Industrial Technology

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3