Conformable Shear Mode Transducers from Lead‐Free Piezoelectric Ceramic Coatings: An Innovative Ultrasonic Solution for Submerged Structural Health Monitoring

Author:

Yin Jie1ORCID,Wong Voon‐Kean1ORCID,Xu Qinwen12,Subhodayam Percis Teena Christopher1,Yousry Yasmin Mohamed1ORCID,Shashidhara Acharya1,Zhou Jie12,Luo Ping1,Lim Poh Chong1,Wei FengXia1,Lim David Boon Kiang1,Sun Chengliang2,Yao Kui1ORCID

Affiliation:

1. Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634 Singapore

2. The Institute of Technological Sciences Wuhan University Wuhan 430072 China

Abstract

AbstractShear mode‐guided ultrasonic waves are highly regarded for submerged or subterranean structural health monitoring (SHM), owing to their non‐dispersive feature and minimized acoustic energy loss when in contact with liquid or solid. High‐performance shear mode ceramic ultrasonic transducers with robustness and cost‐effectiveness are highly demanded for underwater or underground SHM applications, especially in harsh environments. However, the implementation of discrete shear mode piezoelectric ceramic ultrasonic transducers is hindered by the inconsistency with manual installation, lack of conformability on curved surfaces, and unreliable acoustic coupling between the transducers and the structure. Here, direct‐write conformable shear mode ultrasonic transducers made from piezoelectric lead‐free ceramic coatings, which are in situ produced on steel structures by a scalable thermal spray process, are proposed. The obtained lead‐free lithium‐doped potassium sodium niobate (KNN‐LN) ceramic coatings exhibit a high effective shear piezoelectric strain coefficient (d24, f) above 60 pm V−1 in a broad frequency range from 100 Hz to 200 kHz. The resulting conformable shear mode KNN‐LN ceramic coating transducers successfully showcase the functions of exciting and detecting stable shear mode ultrasonic wave signals with operation temperature exceeding 200 °C and demonstrate reliable capability in defect detection in both air and liquid environments.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3