Affiliation:
1. Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634 Singapore
2. The Institute of Technological Sciences Wuhan University Wuhan 430072 China
Abstract
AbstractShear mode‐guided ultrasonic waves are highly regarded for submerged or subterranean structural health monitoring (SHM), owing to their non‐dispersive feature and minimized acoustic energy loss when in contact with liquid or solid. High‐performance shear mode ceramic ultrasonic transducers with robustness and cost‐effectiveness are highly demanded for underwater or underground SHM applications, especially in harsh environments. However, the implementation of discrete shear mode piezoelectric ceramic ultrasonic transducers is hindered by the inconsistency with manual installation, lack of conformability on curved surfaces, and unreliable acoustic coupling between the transducers and the structure. Here, direct‐write conformable shear mode ultrasonic transducers made from piezoelectric lead‐free ceramic coatings, which are in situ produced on steel structures by a scalable thermal spray process, are proposed. The obtained lead‐free lithium‐doped potassium sodium niobate (KNN‐LN) ceramic coatings exhibit a high effective shear piezoelectric strain coefficient (d24, f) above 60 pm V−1 in a broad frequency range from 100 Hz to 200 kHz. The resulting conformable shear mode KNN‐LN ceramic coating transducers successfully showcase the functions of exciting and detecting stable shear mode ultrasonic wave signals with operation temperature exceeding 200 °C and demonstrate reliable capability in defect detection in both air and liquid environments.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献