Green‐Solvent‐Processed High‐Performance Ternary Organic Solar Cells Comprising a Highly Soluble and Fluorescent Third Component

Author:

Lu Hao12,Ran Guangliu3,Liu Yuqiang2,Pei Zengliang4,Liu Wenxu4,Liu Yahui2,Tang Zheng5,Zhang Wenkai3,Bo Zhishan124ORCID

Affiliation:

1. College of Materials Science and Engineering Qingdao University Qingdao 266071 P. R. China

2. College of Textiles & Clothing State Key Laboratory of Bio‐fibers and Eco‐textiles Qingdao University Qingdao 266071 P. R. China

3. Department of Physics and Applied Optics Beijing Area Major Laboratory Beijing Normal University Beijing 100875 P. R. China

4. Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China

5. Center for Advanced Low‐Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China

Abstract

AbstractNowadays, it is still a great challenge to obtain high‐performance green‐solvent‐processed organic solar cells (OSCs). In this study, a ternary blend strategy (one donor and two acceptors, 1D/2A) is developed to solve the difficulty of film morphology modulation during the fabrication of high‐performance green‐solvent‐processed OSCs. A typical high‐performance halogenated‐solvent processable binary system D18:BTP‐eC9‐4F is selected as the host, its green‐solvents‐processed devices show an inferior power conversion efficiency (PCE) of ≈16%. SM16 with two 3D shape persistent end groups is selected as the third component due to its high fluorescence quantum yield, reduced intermolecular interaction, good solubility, and moderate crystallinity. As a result, the ternary devices display bicontinuous interpenetrating networks, reduced energy loss, and suppressed charge carrier recombination losses. Hence, an excellent PCE of 18.20% is achieved for the D18:BTP‐eC9‐4F:SM16 ternary devices, which is much higher than D18:BTP‐eC9‐4F‐based binary ones and also one of the highest PCEs for the green‐solvents‐processed OSCs. Besides, this strategy also demonstrates a good universality for other binary systems and becomes an effective pathway for the development of green‐solvent processable high‐performance OSCs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3