Boosting Piezo‐Catalytic Activity of KNN‐Based Materials with Phase Boundary and Defect Engineering

Author:

Liao Jiayang12,Lv Xiang1,Sun Xi‐xi1,Li Junhua1,Wang Haomin3,Chen Qiang1,Lu Hanpeng4,Wang Duan4,Bi Jian25,Wu Jiagang1ORCID

Affiliation:

1. College of Materials Science and Engineering Sichuan University Chengdu 610065 China

2. College of Chemistry and Materials Science Sichuan Normal University Chengdu 610066 China

3. Institute for Advanced Study Chengdu University Chengdu 610106 China

4. Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China

5. Mianyang Teachers’ College Mianyang 621000 China

Abstract

AbstractAlthough the piezo‐catalysis is promising for the environmental remediation and biomedicine, the piezo‐catalytic properties of various piezoelectric materials are limited by low carrier concentrations and mobility, and rapid electron‐hole pair recombination, and reported regulating strategies are quite complex and difficult. Herein, a new and simple strategy, integrating phase boundary engineering and defect engineering, to boost the piezo‐catalytic activity of potassium sodium niobate ((K, Na)NbO3, KNN) based materials is innovatively proposed. Tur strategy is validated by exampling 0.96(K0.48Na0.52)Nb0.955Sb0.045O3‐0.04(BixNa4‐3x)0.5ZrO3‐0.3%Fe2O3 material having phase boundary engineering and conducted the defect engineering via the high‐energy sand‐grinding. A high reaction rate constant k of 92.49 × 10−3 min−1 in the sand‐grinding sample is obtained, which is 2.40 times than that of non‐sand‐grinding one and superior to those of other representative lead‐free perovskite piezoelectric materials. Meanwhile, the sand‐grinding sample has remarkable bactericidal properties against Escherichia coli and Staphylococcus aureus. Superior piezo‐catalytic activities originate from the enhanced electron‐hole pair separation and the increased carrier concentration. This study provides a novel method for improving the piezo‐catalytic activities of lead‐free piezoelectric materials and holds great promise for harnessing natural energy and disease treatment.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Sichuan Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3