Micro/Nano‐Structured Superhydrophobic Gas Diffusion Electrode for Boosting the Stability of Industrial‐Compatible Electrochemical CO Production in Flow Cells

Author:

Jiang Zhe12,Lyu Zhen‐Hua12,Liu Xiao‐Zhi3,Fu Jiaju1,Zhang Libing12,Yao Ze‐Cheng12,Zheng Li‐Rong4,Su Dong3,Fan You‐Jun5,Tang Tang16,Hu Jin‐Song12ORCID

Affiliation:

1. Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 China

2. School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China

3. Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China

4. Beijing Synchrotron Radiation Facility Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China

5. Guangxi Key Laboratory of Low Carbon Energy Materials School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 China

6. School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China

Abstract

AbstractElectrochemical flow cells based on gas diffusion electrodes (GDEs) provide a potential means to achieve industrial‐compatible massive CO production. However, the application of flow cells is hindered by the stability issue caused by GDE hydrophilizing and electrolyte flooding. The current strategies have certain limitations in maintaining the long‐term hydrophobicity of GDE. Inspired by the superhydrophobic materials in nature, here a constructionally engineered superhydrophobic GDE is presented for boosting the stability of CO2 reduction to CO in flow cells under industrial‐compatible current densities. This superhydrophobic GDE is comprised of micro/nano‐structured CNTs/graphene composites with abundant and robust single‐atomic Ni‐Nx active sites (NiSA‐CNT@G). The unique integrated hierarchical structure with highly exposed surface area and enhanced mass/charge transfer contributes to an industrial‐scale CO partial current density of 406.5 mA cm−2 with a FECO of 96.3% in a flow cell. Notably, the robust superhydrophobic micro/nanostructure efficiently resists electrolyte flooding over the GDE during the CO2RR, thus maintaining a stable three‐phase interface. Over 70 h stability is demonstrated at an industrial‐compatible current density of 300 mA cm−2. These results open up new opportunities for industrial‐level CO production via electrochemical CO2RR.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Chinese Academy of Sciences

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3