Atomically Precise Hexanuclear Ce(IV) Clusters as Functional Fluorescent Nanosensors for Rapid One‐Step Detection of PFAS

Author:

Hassan Mohamed H.1,Khan Reem1,Andreescu Daniel1,Shrestha Shreetu2,Cotlet Mircea2,Andreescu Silvana1ORCID

Affiliation:

1. Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699 USA

2. Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA

Abstract

AbstractThe presence of poly‐ and perfluoroalkyl substances (PFAS) in the environment is associated with adverse health effects but measuring PFAS is challenging due to the associated high cost and technical complexities of the analysis. Here, the reactivity of atomically precise metal‐oxo clusters is reported and the foundation for their use is provided as fluorescent nanosensors for PFAS detection. The material comprises crystalline, water soluble, hexanuclear cerium‐oxo clusters [Ce63‐O)43‐OH)4]12+ decorated with glycine molecules (Ce‐Gly) characterized by fluorescence emission at 353 nm. The Ce‐Gly fluorescence is found sensitive to long chain carboxylated PFAS of CF3–(CF2)n –, where n ≥ 6, such as perfluorooctanoic, perfluorononanoic and perfluorodecanoic acids. This unique reactivity leads to a change in the emission spectra in a concentration dependent manner, enabling PFAS detection through ligand exchange and aggregation‐induced emission (AIE) enhancement. No significant cross‐reactivity from potentially co‐existing species, including sulfonated PFAS, octanoic and dodecanoic acids, humic acid, and inorganic ions is observed. With an optimal concentration of 3.3 µg mL−1 Ce‐Gly, the method demonstrated detection limits of 0.24 ppb for PFOA and 0.4 ppb for PFNA. These findings highlight the potential of fluorescence‐based detection strategies utilizing nanoscale probes such as Ce‐Gly as fluorescent probes and nanosensors for PFAS.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3