Wet‐Chemical Epitaxial Growth of Metastable‐Phase Intermetallic Electrocatalysts

Author:

Han Sumei1,Sun Hao1,Ma Chaoqun1,Yun Qinbai2,He Caihong1,Ma Xiao1,Zhang Huaifang1,Feng Fukai1,Meng Xiangmin3,Xia Jing3,Wang An‐Liang4,Cao Wenbin1,Lu Qipeng15ORCID

Affiliation:

1. School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 China

2. Department of Chemical and Biological Engineering & Energy Institute The Hong Kong University of Science and Technology Hong Kong China

3. Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China

4. School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China

5. State Key Laboratory of Nuclear Power Safety Technology and Equipment University of Science and Technology Beijing Beijing 100083 China

Abstract

AbstractMetastable‐phase intermetallic compounds (IMCs) provide great flexibility to modify the electronic structure and surface coordination environment of metallic catalysts for various reactions. However, the synthesis of metastable‐phase IMCs with high catalytic performance remains a great challenge due to their thermodynamically unstable nature. Here, a wet‐chemical epitaxial growth strategy to synthesize metastable‐phase Pd‐Bi intermetallic nanocrystals (NCs) is reported. β‐Pd3Bi and γ‐Pd5Bi3 intermetallic NCs are epitaxially grown on the templates of face‐centered cubic Pd3Pb nanocubes and hexagonal close‐packed PtBi nanoplates, achieving Pd3Pb@Pd3Bi and PtBi@Pd5Bi3 core–shell NCs, respectively. The obtained Pd3Pb@Pd3Bi NCs possess a mass activity and specific activity of 8.52 A mg−1Pd and 11.59 mA cm−2 for ethanol oxidation reaction, which is 7.5 and 3.6 times as high as those of commercial Pd/C, respectively. Meanwhile, Pd3Pb@Pd3Bi NCs possess superior stability than commercial Pd/C. This work advances the design and synthesis of high‐performance metastable‐phase IMCs, opening an avenue for electrocatalytic ethanol oxidation and beyond.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Basic and Applied Basic Research Foundation of Guangdong Province

Fundamental Research Funds for the Central Universities

Beijing Nova Program

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3