Low Volume‐Expansion, Insertion‐Type Layered Silicate Hierarchical Structure For Superior Storage Of Li, Na, K

Author:

Zhang Jian1,Liu Tianyong1,Yuan Qingyan1,Li Biao1,Wu Yunjia1,Dou Yibo1,Zhang Xin1,Han Jingbin1ORCID

Affiliation:

1. State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China

Abstract

AbstractA hierarchical structure is successfully synthesized by coating polypyrrole (PPy) on the surface of carbon/saponite superlattice (denoted as PPy@C/SAP), and applied as low volume‐expansion insertion‐type anode for Li, Na, K storage.The synergistic effect of metal Ni, Fe doping, carbon/silicate superlattice, abundant oxygen vacancies and PPy coating leads to a good electronic conductivity and large current discharging capability. As a Si‐based material, PPy@C/SAP has excellent storage capability for Li (659 mAh g−1 after 1000 cycles at 2 A g−1 and 550 mAh g−1 after 1000 cycles at 5 A g−1), Na (maximum specific capacity of 533 and 327 mAh g−1 after 50 cycles) as well as K (236 mAh g−1 after 100 cycles). XPS, XANES, XRD, FTIR, HRTEM, SEM are used to detect the hybrid mechanism (bulk insertion and surface conversion) with a volume expansion as low as 9%. Insertion reaction driven by valence state change of Ni, Fe, Si (Ni0⇔Ni2+, Fe0⇔Fe3+, Si2+⇔Si4+) in laminates and conversion reactions between LiOH/Li2CO3 and LiH/Li2C2 catalyzed by Ni° contribute to the high performance. In the whole electrochemical process, layered structure is retained while the conversion reactions of LiOH (prodeced by laminates dehydroxylation) and Li2CO3 (electrolyte decomposition) cause the dynamic evolution of solid ectrolyte interphase. This study develops a promising Si‐based anode material for lithium ion batteries, sodium ion batteries and potassium ion batteries, which is significant for designing long cycle life rechargeable batteries.

Funder

National Basic Research Program of China

Fundamental Research Funds for the Central Universities

British Scoliosis Research Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3