Sulfur Mismatch Substitution in Layered Double Hydroxides as Efficient Oxygen Electrocatalysts for Flexible Zinc–Air Batteries

Author:

Han Xiaotong12,Li Nannan3,Baik Jae Sung4,Xiong Peixun1,Kang Yingbo1,Dou Qingyun1,Liu Qing1,Lee Jin Yong3,Kim Chul Sung4,Park Ho Seok1ORCID

Affiliation:

1. School of Chemical Engineering Department of Health Sciences and Technology Samsung Advanced Institute for Health Sciences and Technology (SAIHST) SKKU Advanced Institute of Nano Technology (SAINT) and SKKU Institute of Energy Science and Technology (SIEST) Sungkyunkwan University 440746 Suwon Republic of Korea

2. College of Chemistry and Chemical Engineering Chongqing University 401331 Chongqing China

3. Department of Chemistry Institute of Basic Science Sungkyunkwan University 16419 Suwon Republic of Korea

4. Department of Physics Kookmin University 02707 Seoul Republic of Korea

Abstract

AbstractAlthough layered double hydroxides (LDHs) are extensively investigated for oxygen electrocatalysis, their development is hampered by their limited active sites and sluggish reaction kinetics. Here, sulfur mismatch substitution of NiFe–LDH (S–LDH) is demonstrated, which are in‐situ deposited on nitrogen‐doped graphene (S–LDH/NG). This atomic‐level sulfur incorporation leads to the construction of the tailored topological microstructure and the modulated electronic structure for the improved catalytic activity and durability of bifunctional electrocatalysts. The combined computational and experimental results clarify that the electron transfer between the sulfur anion and Fe3+ generates the high‐valence Fe4+ species, while the mismatch substitution of the sulfur anion induces the metallic conductivity, an increased carrier density, and the reduced reaction barrier. Consequently, the as‐fabricated Zn–air battery achieves a high power density of 165 mW cm‐2, a large energy density of 772 Wh kgZn‐1 at 5 mA cm‐2, and long cycle stability for 120 h, demonstrating its real‐life operation.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3