Vacancy‐Assisted Transformation of MoS2 Nanosheets into Defective MoSx Nanoclusters to Regulate Sodium‐Ion Electrode Functionality

Author:

Jin Xiaoyan12,Lee Taehun3,Soon Aloysius4,Hwang Seong‐Ju1ORCID

Affiliation:

1. Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea

2. Department of Applied Chemistry University of Seoul Seoul 02504 Republic of Korea

3. Division of Advanced Materials Engineering Jeonbuk National University Jeonju 54896 Republic of Korea

4. Center for Artificial Synesthesia Materials Discovery Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea

Abstract

AbstractDefect structure has attracted significant attention because of its importance as design factor for exploring high‐performance functional materials. This study reports a defect‐engineering strategy to optimize the electrode performance of transition metal dichalcogenides and a clear elucidation of the underlying mechanism on the benefit of defect engineering with cycling‐induced transformation into small nanoclusters. The intercalative hybridization of monolayered MoS2 nanosheets with bulky tetraalkylammonium cations is effective for generating abundant crystal vacancies in the MoS2 lattice and improving the sodium‐ion electrode performance, achieving one of the excellent performances among MoS2‐based sodium‐ion anode materials. The improved electrode activity of the tetrapropylammonium−MoS2 nanohybrid is ascribed to the vacancy‐assisted transformation from monolayered MoS2 nanosheets into trimeric/dimeric MoSx nanoclusters during electrochemical cycling. 23Na/1H magic angle spinning‐nuclear magnetic resonance analyses demonstrated that cycling‐induced defective MoSx nanoclusters yields a complex Na environment with high ion mobility and enhanced electrolyte absorptivity, promoting the excellent electrode functionality of tetrapropylammonium‐assembled MoS2 nanosheets.

Funder

National Research Foundation of Korea

Ministry of Education

Ministry of Science and ICT, South Korea

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3