A Dual‐Functional Electrolyte Additive for High‐Performance Potassium Metal Batteries

Author:

Park Jimin1,Jeong Yeseul2,Kang Hyokyeong1,Yu Tae‐Yeon1,Xu Xieyu3,Liu Yangyang3,Xiong Shizao4,Lee Seon Hwa5,Sun Yang‐Kook16,Hwang Jang‐Yeon16ORCID

Affiliation:

1. Department of Energy Engineering Hanyang University Seoul 04763 Republic of Korea

2. Department of Materials Science and Engineering Chonnam National University Gwangju 500‐757 Republic of Korea

3. State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University 28 Xianning West Road Xi'an Shaanxi 710049 China

4. Department of Physics Chalmers University of Technology Göteborg SE 412 96 Sweden

5. Research Institute of Industrial Science and Technology (RIST) POSCO Global R&D Center Incheon 21985 Republic of Korea

6. Department of Battery Engineering Hanyang University Seoul 04763 Republic of Korea

Abstract

AbstractPotassium metal batteries (KMBs) coupled with layered transition metal oxides as cathode materials are a promising energy−storage technology owing to low cost and high capacity. However, uncontrollable dendritic growth in the K−metal anode and chemical reactivity of the layered transition metal oxide cathode against the electrolyte solution cause KMBs to suffer from low Coulombic efficiency, rapid capacity fading, and critical safety issues. In this study, an electrolyte engineering strategy is introduced by introducing adiponitrile (ADN) as a dual−functional electrolyte additive containing an electron−rich nitrile group (C≡N) in its molecule structure. Thus, the addition of 1 wt.% ADN can alter the chemical properties of the electrolyte solution, thereby improving the anode−electrolyte and cathode−electrolyte interfacial stabilities in KMBs. The formation of a potassiophilic compound with C≡N in the solid electrolyte interphase layer can guide the uniform electrodeposition of K and suppress the dendritic growth in the K−metal. Moreover, C≡N forms a strong coordination bond with the oxidized transition metal, leading the reversible redox reactions by mitigating the undesirable disproportionation reaction and improving the thermal stability of the layered transition metal oxide cathode. Computational calculations and experimental characterizations are used to verify the role of ADN additive in enhancing the electrochemical properties of KMBs.

Funder

National Research Foundation of Korea

Korea Institute of Energy Technology Evaluation and Planning

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3