Affiliation:
1. Faculty of Materials Science and Engineering South China University of Technology Guangzhou 510640 P. R. China
2. School of Civil Engineering and Transportation South China University of Technology Guangzhou 510640 P. R. China
Abstract
AbstractConcurrently achieving mechanical robustness, low hysteresis, and high transparency are essential for ionogels to enhance their reliability and satisfy the requirements in soft electronics. Fabricating ionogels comprising these characteristics presents a considerable challenge. Herein, inspired by the structure of neural networks, a new strategy for in situ formation of dense urea moieties aggregated domains is proposed to achieve topology‐tailoring polyurea ionogels. Initially, leveraging the pronounced disparity in reactivity of the isocyanate (─NCO) groups between isophorone diisocyanate (IPDI) and NCO‐terminated prepolymer (PPGTD), IPDI preferentially reacts with deblocked trifunctional latent curing agents, resulting in the formation of dense urea moieties aggregated domains. Thereafter, these domains are interconnected via PPGTD to establish polymer networks in which the ionic liquid is uniformly dispersed, forming neural networks like ionogels. Attributed to this unique design strategy, the polyurea ionogel demonstrates remarkable properties, including high strength (0.6–2.4 MPa), excellent toughness (0.9–4.3 MJ m−3), low hysteresis (6.6–11.6%), high transparency (>92%), along with enhanced fatigue and puncture resistance. Furthermore, the polyurea ionogels exhibit outstanding versatility, enabling their in strain sensors, flexible electroluminescence devices, and nanogenerators. This strategy contributes to the design of ionogels with unparalleled combinatory properties, catering to the diverse demands of soft iontronics.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献