Regulation Mechanism on A Bilayer Li2O‐Rich Interface between Lithium Metal and Garnet‐Type Solid Electrolytes

Author:

Jiang Haoyang1,Liu Junqing1,Tang Bin2,Yang Zhendong1,Liang Xinghui1,Yu Xinyu3,Gao Yirong3,Wei Jinping1,Zhou Zhen12ORCID

Affiliation:

1. Institute of New Energy Material Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (ReCast) School of Materials Science and Engineering Nankai University Tianjin 300350 P. R. China

2. Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2) School of Chemical Engineering Zhengzhou University Zhengzhou 450001 P. R. China

3. University of Michigan‐Shanghai Jiao Tong University Joint Institute Shanghai Jiao Tong University 800 Dong Chuan Rd., Minhang District Shanghai 200240 P. R. China

Abstract

AbstractThe practical implementation of garnet‐type solid electrolytes, such as Li6.4La3Zr1.4Ta0.6O12 (LLZTO), faces the significant challenge of Li dendrites. Though artificial interfacial strategies are effective in dendrite suppression, further investigation is needed to understand the mechanism of homogeneous Li deposition and its practicability under real‐world conditions. Herein, a bilayer interface is constructed to address these issues. Such a bilayer interface consists of one conformal Li2O‐rich layer, generated by rubbing LLZTO pellets inside molten Li with low‐dose In2O3, and another Li2O layer deposited through atomic layer deposition (ALD). The regulatory effect of the initial Li2O‐rich layer on achieving uniform Li deposition is explored, and the critical current density is enhanced to 2.4 mA cm−2. However, simple interfacial strategy is insufficient to prevent anodic degradation for cycling at room temperature without stack pressure, leading to increased current leakage and directly reducing Li+ within the electrolyte. After insulating it with a second ALD‐Li2O layer that minimally hampers ionic conduction, the Li/Li symmetric cells achieve long cycling life exceeding 1000 h at 0.5 mA cm−2 and maintain stable operation even at 2 mA cm−2. This work provides valuable insights for interfacial strategies towards practical solid‐state batteries.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3