Ultra‐Strong Regenerated Wool Keratin Fibers Regulating via Keratin Conformational Transition

Author:

Zhang Liang123,Ma Ning3,Jia Xiangzheng4,Hua Tianjiao1,Zhu Jin235,Ding Chenbin1,Yang Dongzi1,Luo Jinrong1,Wang Menglei1,Luo Jiajun5,Li Shuo1,Tong Xiaoling1,Fan Qiyue1,Xia Zhou1,Shao Yanyan1,Jian Muqiang3,Gao Enlai4,Shao Yuanlong235ORCID,Zhang Jin36

Affiliation:

1. College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS) Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies Soochow University Suzhou 215006 P. R. China

2. School of Materials Science and Engineering Peking University Beijing 100871 P. R. China

3. Beijing Graphene Institute (BGI) Beijing 100095 P. R. China

4. Department of Engineering Mechanics School of Civil Engineering Wuhan University Wuhan 430072 P. R. China

5. Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 P. R. China

6. Center for Nanochemistry Beijing Science and Engineering Center for Nanocarbons Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China

Abstract

AbstractBy virtue of remarkable biocompatibility and their promising applications in biomedical fields, biomass‐regenerated fibers, such as wool keratin fiber and cellulose fiber, have attracted extensive attention. However, the insufficient mechanical performance still hinders their yarn manufacturing capability and further large‐scale applications. Herein, an ultra‐strong and ultra‐tough regenerated wool keratin fiber by regulating keratin conformation with high‐quality small‐size graphene (HQSGr) and mechanical training treatment (M‐HQSGr‐RWKF) is fabricated. With the assistance of mechanical training, a small addition of HQSGr (0.1 wt.%) remarkably augments the secondary structure transition from α‐helix to β‐sheet of the keratin, which delivers a tensile strength of 215.4 ± 5.2 MPa, surpassing all reported natural wool and regenerated wool or even poultry fibers. Benefiting from the excellent mechanical strength, wet‐state toughness (158.9 MJ m−3), and recoverable strain (205.0%), M‐HQSGr‐RWKF has been demonstrated as a biocompatible artificial muscle to drive the biomimetic motion, which manifests ultrahigh actuation strain greater than 100.0% and stress of 16.7 MPa. The derived ultra‐strong and ultra‐tough keratin fiber opens a new avenue for developing smart fiber from biomass resources.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Donghua University

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3