Defect‐Induced Electron Redistribution between Pt‐N3S1 Single Atomic Sites and Pt Clusters for Synergistic Electrocatalytic Hydrogen Production with Ultra‐High Mass Activity

Author:

Wang Minmin1,Feng Chao1,Mi Wanliang2,Guo Mengdi1,Guan Zekun1,Li Min1,Chen Hsiao‐Chien34,Liu Yunqi1,Pan Yuan1ORCID

Affiliation:

1. State Key Laboratory of Heavy Oil Processing China University of Petroleum (East China) Qingdao 266580 China

2. Research Institute of Petroleum Processing Sinopec Beijing 100083 China

3. Center for Reliability Science and Technologies Chang Gung University Taoyuan 33302 Taiwan

4. Kidney Research Center Department of Nephrology Linkou Chang Gung Memorial Hospital Taoyuan 333423 Taiwan

Abstract

AbstractA N, S co‐doped carbon with abundant vacancy defects (NSC) anchored Pt single atoms (SAs) and nanoclusters (NCs) derived from coal pitch by a self‐assembly‐pyrolysis strategy is reported and a defect‐induced electron redistribution effect based on Pt SAs‐Pt NCs/NSC catalyst is proposed for electrocatalytic hydrogen evolution reaction (HER). The optimized catalyst featuring Pt‐N3S1 SAs and Pt NCs dual active sites exhibit excellent HER activity with an overpotential of 192 mV at a current density of 400 mA cm−2, a turnover frequency of 30.1 s−1 at an overpotential of 150 mV, which the mass activity is 13716 mA mgPt−1, 7.4 times higher than that of 20% Pt/C catalyst. In situ Raman revealsa direct correlation between the defect structure of the catalyst and hydrogen adsorption during the reaction process. Density functional theory calculation shows the defect‐induced electron redistribution between Pt‐N3S1 SAs and Pt NCs. The electrons are transferred from Pt NCs to Pt SAs, which increases the number of electrons on the surface of Pt SAs and enhances the adsorption ability of H+. Meanwhile, the dissociation ability of H* on the Pt NCs is promoted, thus synergistically promoting the HER process.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Taishan Scholar Foundation of Shandong Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3